9,319 research outputs found

    On a factorization of Riemann's ζ\zeta function with respect to a quadratic field and its computation

    Full text link
    Let KK be a quadratic field, and let ζK\zeta_K its Dedekind zeta function. In this paper we introduce a factorization of ζK\zeta_K into two functions, L1L_1 and L2L_2, defined as partial Euler products of ζK\zeta_K, which lead to a factorization of Riemann's ζ\zeta function into two functions, p1p_1 and p2p_2. We prove that these functions satisfy a functional equation which has a unique solution, and we give series of very fast convergence to them. Moreover, when ΔK>0\Delta_K>0 the general term of these series at even positive integers is calculated explicitly in terms of generalized Bernoulli numbers

    Examining the Personal and Institutional Determinants of Research Productivity in Hospitality and Tourism Management

    Full text link
    The transition toward a post-capitalist knowledge-oriented economy has resulted in an increasingly competitive academic environment, where the success of faculty is dependent on their research productivity. This study examines the personal and institutional determinants of the quantity and quality of the research productivity of hospitality and tourism management faculty in US institutions. A survey of 98 faculty found that a different set of determinants impact the quantity and quality aspects of research productivity. Also, institutional determinants were found to play a larger role, indicating the need for administrators to strive for a culture that is supportive of and an infrastructure that is conducive to their faculty’s research success. The authors use the field of hospitality and tourism management as a case study to develop a holistic and cohesive framework for knowledge worker productivity that can guide the evaluation, hiring, and development of researchers

    Using the distribution of cells by dimension in a cylindrical algebraic decomposition

    Get PDF
    We investigate the distribution of cells by dimension in cylindrical algebraic decompositions (CADs). We find that they follow a standard distribution which seems largely independent of the underlying problem or CAD algorithm used. Rather, the distribution is inherent to the cylindrical structure and determined mostly by the number of variables. This insight is then combined with an algorithm that produces only full-dimensional cells to give an accurate method of predicting the number of cells in a complete CAD. Since constructing only full-dimensional cells is relatively inexpensive (involving no costly algebraic number calculations) this leads to heuristics for helping with various questions of problem formulation for CAD, such as choosing an optimal variable ordering. Our experiments demonstrate that this approach can be highly effective.Comment: 8 page

    Program Verification in the presence of complex numbers, functions with branch cuts etc

    Get PDF
    In considering the reliability of numerical programs, it is normal to "limit our study to the semantics dealing with numerical precision" (Martel, 2005). On the other hand, there is a great deal of work on the reliability of programs that essentially ignores the numerics. The thesis of this paper is that there is a class of problems that fall between these two, which could be described as "does the low-level arithmetic implement the high-level mathematics". Many of these problems arise because mathematics, particularly the mathematics of the complex numbers, is more difficult than expected: for example the complex function log is not continuous, writing down a program to compute an inverse function is more complicated than just solving an equation, and many algebraic simplification rules are not universally valid. The good news is that these problems are theoretically capable of being solved, and are practically close to being solved, but not yet solved, in several real-world examples. However, there is still a long way to go before implementations match the theoretical possibilities

    A "Piano Movers" Problem Reformulated

    Get PDF
    It has long been known that cylindrical algebraic decompositions (CADs) can in theory be used for robot motion planning. However, in practice even the simplest examples can be too complicated to tackle. We consider in detail a "Piano Mover's Problem" which considers moving an infinitesimally thin piano (or ladder) through a right-angled corridor. Producing a CAD for the original formulation of this problem is still infeasible after 25 years of improvements in both CAD theory and computer hardware. We review some alternative formulations in the literature which use differing levels of geometric analysis before input to a CAD algorithm. Simpler formulations allow CAD to easily address the question of the existence of a path. We provide a new formulation for which both a CAD can be constructed and from which an actual path could be determined if one exists, and analyse the CADs produced using this approach for variations of the problem. This emphasises the importance of the precise formulation of such problems for CAD. We analyse the formulations and their CADs considering a variety of heuristics and general criteria, leading to conclusions about tackling other problems of this form.Comment: 8 pages. Copyright IEEE 201

    Diversity in Parametric Families of Number Fields

    Full text link
    Let X be a projective curve defined over Q and t a non-constant Q-rational function on X of degree at least 2. For every integer n pick a point P_n on X such that t(P_n)=n. A result of Dvornicich and Zannier implies that, for large N, among the number fields Q(P_1),...,Q(P_N) there are at least cN/\log N distinct, where c>0. We prove that there are at least N/(\log N)^{1-c} distinct fields, where c>0.Comment: Minor inaccuracies detected by the referees are correcte

    Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm

    Spin-singlet Gaffnian wave function for fractional quantum Hall systems

    Full text link
    We characterize in detail a wave function conceivable in fractional quantum Hall systems where a spin or equivalent degree of freedom is present. This wave function combines the properties of two previously proposed quantum Hall wave functions, namely the non-Abelian spin-singlet state and the nonunitary Gaffnian wave function. This is a spin-singlet generalization of the spin-polarized Gaffnian, which we call the "spin-singlet Gaffnian" (SSG). In this paper we present evidence demonstrating that the SSG corresponds to the ground state of a certain local Hamiltonian, which we explicitly construct, and, further, we provide a relatively simple analytic expression for the unique ground-state wave functions, which we define as the zero energy eigenstates of that local Hamiltonian. In addition, we have determined a certain nonunitary, rational conformal field theory which provides an underlying description of the SSG and we thus conclude that the SSG is ungapped in the thermodynamic limit. In order to verify our construction, we implement two recently proposed techniques for the analysis of fractional quantum Hall trial states: The "spin dressed squeezing algorithm", and the "generalized Pauli principle".Comment: 15 pages, 2 figures. Version 3 fixes a typographical error in the Hamiltonian, Eq 3. Version 2 incorporates referee and editorial suggestions. The original title "Putting a Spin on the Gaffnian" was deemed to be too inappropriate for PR

    A nullstellensatz for sequences over F_p

    Get PDF
    Let p be a prime and let A=(a_1,...,a_l) be a sequence of nonzero elements in F_p. In this paper, we study the set of all 0-1 solutions to the equation a_1 x_1 + ... + a_l x_l = 0. We prove that whenever l >= p, this set actually characterizes A up to a nonzero multiplicative constant, which is no longer true for l < p. The critical case l=p is of particular interest. In this context, we prove that whenever l=p and A is nonconstant, the above equation has at least p-1 minimal 0-1 solutions, thus refining a theorem of Olson. The subcritical case l=p-1 is studied in detail also. Our approach is algebraic in nature and relies on the Combinatorial Nullstellensatz as well as on a Vosper type theorem.Comment: 23 page
    • …
    corecore